
Bathymetry SPOT - Technical

Simon Greener,
The SpatialDB Advisor

Database Synchronisation

➲ Need to synchronise production and
distribution databases.

➲ Approach:
 Use “out of the box” Oracle capabilities

 Single point of support (DBAs);
 Integrated with data management activities (backup etc);
 Server-side processing using single technology platform;
 Metalink support enabled;
 Declarative vs Programmatic;
 Scalable in terms of processing (parallel option) and

personnel (generic skills easier to contract out);

Approach

➲ Read Only Materialized View Replication
 Fast Refresh

 Web Acccess to distribution database may occur
outside normal GeoScience Australia work hours;

 Complete object rebuilding takes a significant enough
amount of time to narrow available processing
windows;

 May cause objects to “invalidate”;
 Fast refresh only pushes changed rows.

 However, Fast Refreshable MVs using Oracle
Objects have restrictions that introduce
complexity....

Fast Refresh MVs & Oracle Spatial

➲ SDO_Geometry is an Oracle Object.
➲ There are a number of restrictions with the

use of Oracle Objects in MV creation
especially where FAST REFRESH is
desireable.

➲ While 11 constraints were identified and
solved, only 4 specific ones relate to Oracle
Objects.

Summary of 4 Main
(SDO_Geometry related) Findings

1. You can FAST REFRESH a materialized view that has an
Oracle object such as SDO_Geometry in its select list only if it
is based on a single table (ie one entry in a FROM clause), BUT
you cannot reference it in a where clause:
 CREATE MATERIALIZED VIEW mv_a

AS
SELECT a.ID,
 a.attribute1,
 a.GEOM
 FROM table_a a
 WHERE geom IS NOT NULL;

2. ENABLE QUERY REWRITE doesn't work when the select list
contains an Oracle object such as SDO_Geometry.

Findings (2)

 3. Sdo_Geometry constructors are not allowed for FAST REFRESH:

CREATE MATERIALIZED VIEW mv_a
BUILD IMMEDIATE REFRESH FAST ON DEMAND
AS
SELECT id,
 MDSYS.SDO_GEOMETRY(2003,8311,NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,3),
 MDSYS.SDO_ORDINATE_ARRAY(a.W_LONG,a.S_LAT,a.E_LONG,a.N_LAT))
 FROM table_a a;

You will get this reported in the MV_CAPABILITIES_TABLE:

"the reason why the capability is disabled has escaped analysis"

4.Union All MVs that include SDO_Geometry will not work because (cf 2.):

"Each query block in the UNION ALL query must satisfy the
requirements of a fast refreshable materialized view with aggregates
or a fast refreshable materialized view with joins".

The Geom attributes need to be moved to separate materialized views.

MultiPoints

➲ Bathymetry SPOT contains significant holding of 3D point data.
➲ One table alone (MarineObs) has nearly 70 million

observations, yet these only describe around 13,000 surveys.
➲ Tests made to see if use of multi-point descriptions of surveys

might help in distribution.
➲ Surrogate linestrings are used to describe these objects as

query and draw based on MarineObs would be slow (though
GA has Parallel Option) – see next slide.

➲ Multi-points objects considered more “natural” to domain
experts and addressed representation issues with surrogate
linestrings.

MultiPoint vs Surrogate Linestrings

Multi-Point Issues

➲ Construction of Multi-Points
 Need efficient approach to building from individual

observations.
 Synchronisation with Fast Refresh required custom

solution.
 Small number of singlebeam marine surveys break

SDO_ORDINATE_ARRAY ordinate limit.
 The ordinate array can only hold 1,048,576 ordinates which is

349,525 3D points.
 Had to modify distribution data model to support required 1:M model

change.

SELECT /*+ PARALLEL(3) */
 SDO_AGGR_UNION(MDSYS.SDOAGGRTYPE(aggr_geom,0.05))

 FROM (SELECT /*+ PARALLEL(3) */
 sb_eno,
 SDO_AGGR_UNION(MDSYS.SDOAGGRTYPE(aggr_geom,0.05))
 as aggr_geom
 FROM (SELECT /*+ PARALLEL(3) */
 sb_eno,
 SDO_AGGR_UNION(
 MDSYS.SDOAGGRTYPE(aggr_geom,0.05))
 as aggr_geom
 FROM (SELECT /*+ PARALLEL(3)*/
 sb_eno,
 SDO_AGGR_UNION(
 MDSYS.SDOAGGRTYPE(aggr_geom,
 0.05))
 as aggr_geom
 FROM (SELECT /*+ PARALLEL(3)*/
 a.SB_ENO,
 SDO_AGGR_UNION(
 MDSYS.SDOAGGRTYPE(a.geom,
 0.05))
 as aggr_geom
 FROM mv_singlebeam_bathymetry a
 WHERE a.sb_eno = rec.sb_eno
 GROUP BY a.SB_ENO,
 mod(rownum,16)
)
 GROUP BY SB_ENO, mod (rownum, 8)
)
 GROUP BY SB_ENO, mod (rownum, 4)
)
 GROUP BY SB_ENO, mod (rownum, 2)
)
 GROUP BY SB_ENO;

Oracle 10g Spatial Appendix D

➲ Example:

SDO_AGGR_UNION
query (shown with
Parallel option) using
recommended
method from
Appendix D of Oracle
Spatial 10gR2
documentation.

(HAVING clause to
filter out large surveys
not included).

MultiPoint Creation Issues

➲ Initially used SDO_AGGR_UNION to test construction feasibility;
 Used Appendix D (nested SQL);
 Parallel processing improved performance (still slow).
 SDO_AGGR_UNION still had to be wrappered by PL/SQL

procedure to handle SDO_ORDINATE_ARRAY limits.
➲ A faster algorithmn/method for constructing multi-point objects

through a pure PL/SQL implementation was devised.
 Initial implementation provided sufficient performance to warrant

further investigation.
 The PL/SQL package DBMS_PROFILER was used to identify

bottlenecks in the implementation and various changes were made
and compared. The following chart shows the final set of
implementations.

Essentials

➲ Adopted approach has these SQL statements
➲ Where point count

< ordinate limit

➲ Where point count > ordinate limit

Comparison Table

Algorithm Time to Complete (nanoseconds) Milliseconds PseudoSeconds Minutes
Original 3.39E+012 3.39E+006 34 0.57
FunctionTuned 3.34E+012 3.34E+006 33 0.56
NoFunction 5.44E+011 5.44E+005 5 0.09
SdoPoint 8.95E+011 8.95E+005 9 0.15
SdoPointMemory 8.32E+011 8.32E+005 8 0.14
SdoPointAsOrds 7.84E+011 7.84E+005 8 0.13
AllSQL 1.99E+012 1.99E+006 20 0.33
AggrAppendixD 3.36E+015 3.36E+009 33,613 560.22

➲ Algorithm that used SDO_AGGR_UNION
1000 times slower than worst custom
PL/SQL

Column D
0

2,500
5,000
7,500

10,000
12,500
15,000
17,500
20,000
22,500
25,000
27,500
30,000
32,500
35,000

Custom PL/SQL vs SDO_AGGR_UNION

Original
FunctionTuned
NoFunction
SdoPoint
SdoPointMemory
SdoPointAsOrds
AllSQL
AggrAppendixD

Algorithm

Ti
m

e
in

 P
se

ud
oS

ec
on

ds
Comparison Chart (1)

Column D
0
3
5
8

10
13
15
18
20
23
25
28
30
33
35

Comparison of Non-SDO_AGGR_UNION Algorithms

Original
FunctionTuned
NoFunction
SdoPoint
SdoPointMemory
SdoPointAsOrds
AllSQL

Algorithm

Ti
m

e
in

 P
se

ud
oS

ec
on

ds
Comparison Chart 2

Solution...

➲ Aggregation approach inside final PL/SQL function used
custom code and not SDO_AGGR_UNION.

 Procedure has 100 lines of code (all work done in 55
lines).

 Generation of 13,000 individual surveys from 70million
individual 3D points took 50minutes!

➲ DBMS_PROFILER was a great tool!
➲ Oracle, please improve:

 Performance of SDO_AGGR_UNION
 Remove limit on SDO_ORDINATE_ARRAY

