Bathymetry SPOT - Technical

Simon Greener,
The SpatialDB Advisor

Database Synchronisation

< Need to synchronise production and
distribution databases.

< Approach:

® Use “out of the box” Oracle capabilities

Single point of support (DBAS);

Integrated with data management activities (backup etc);
Server-side processing using single technology platform;
Metalink support enabled;

Declarative vs Programmatic;

Scalable in terms of processing (parallel option) and
personnel (generic skills easier to contract out);

Approach

< Read Only Materialized View Replication

® Fast Refresh
® Web Acccess to distribution database may occur
outside normal GeoScience Australia work hours;
® Complete object rebuilding takes a significant enough
amount of time to narrow available processing

windows;
® May cause objects to “invalidate”;

® Fast refresh only pushes changed rows.

® However, Fast Refreshable MVs using Oracle

Objects have restrictions that introduce
complexity....

Fast Refresh MVs & Oracle Spatial

< SDO_Geometry is an Oracle Object.

< There are a number of restrictions with the
use of Oracle Objects in MV creation
especially where FAST REFRESH is
desireable.

< While 11 constraints were identified and
solved, only 4 specific ones relate to Oracle
Objects.

Summary of 4 Main
(SDO _Geometry related) Findings

You can FAST REFRESH a materialized view that has an
Oracle object such as SDO_Geometry in its select list only if it

IS based on a single table (ie one entry in a FROM clause), BUT

you cannot reference it in a where clause:

CREATE MATERIALIZED VIEW mv_ a
AS
SELECT a.ID,
a.attributel,
a.GEOM
FROM table a a
WHERE geom IS NOT NULL;

ENABLE QUERY REWRITE doesn't work when the select list
contains an Oracle object such as SDO_Geometry.

Findings (2)

3. Sdo_Geometry constructors are not allowed for FAST REFRESH:

CREATE MATERIALIZED VIEW mv a
BUILD IMMEDIATE REFRESH FAST ON DEMAND
AS

SELECT id,
MDSYS.SDO GEOMETRY (2003, 8311, NULL,

MDSYS.SDO ELEM INFO ARRAY (1,1003,3),
MDSYS.SDO_ORDINATE ARRAY (a.W LONG,a.S LAT,a.E LONG,a.N LAT))

FROM table a a;

You will get this reported in the MV_CAPABILITIES TABLE:

"the reason why the capability is disabled has escaped analysis"

4.Union All MVs that include SDO_Geometry will not work because (cf 2.):

"Each query block in the UNION ALL query must satisfy the
requirements of a fast refreshable materialized view with aggregates

or a fast refreshable materialized view with joins".
The Geom attributes need to be moved to separate materialized viewsgg¥

MultiPoints

Bathymetry SPOT contains significant holding of 3D point data.
One table alone (MarineObs) has nearly 70 million
observations, yet these only describe around 13,000 surveys.
Tests made to see if use of multi-point descriptions of surveys
might help in distribution.

Surrogate linestrings are used to describe these objects as
query and draw based on MarineObs would be slow (though
GA has Parallel Option) — see next slide.

Multi-points objects considered more “natural” to domain
experts and addressed representation issues with surrogate
linestrings.

MultiPoint vs Surrogate Linestrings

Multi-Point Issues

< Construction of Multi-Points

® Need efficient approach to building from individual
observations.

® Synchronisation with Fast Refresh required custom
solution.

® Small number of singlebeam marine surveys break
SDO_ORDINATE_ARRAY ordinate limit.

® The ordinate array can only hold 1,048,576 ordinates which is
349,525 3D points.

® Had to modify distribution data model to support required 1:M model
change.

Oracle 10g Spatial Appendix D

< Example:

SELECT /*+ PARALLEL(3) */
SDO_AGGR_UNION (MDSYS.SDOAGGRTYPE (aggr _geom, 0.05))
FROM (SELECT /*+ PARALLEL(3) */

SDO_AGGR_UNION sb_eno,

SDO_AGGR_UNION (MDSYS.SDOAGGRTYPE (aggr geom, 0.05))

query (shown with S
Parallel option) using FROM (SEERCE [7H RRAREER()
(
recom mended SDOM@S??T?E%ZEGRTYPE (aggr_geom, 0.05))
methOd from FROM (SEiEC?g?]iIg?ZEALLELB)*/
1 sb eno,
Appe_nd|x D of Oracle o el e
Spat|a| 109 R2 MDSYS . SDOAGGRTYPE (aggr_ geom,
) 0.05))
documentation. as aggr_geom
FROM (SELECT /*+ PARALLEL (3)*/
a.SB ENO,
A (
(HAVING clause to Y e —
filter out large surveys 25 atsr_geon
not included). B L i il o

GROUP BY a.SB_ENO,
mod (rownum, 16)
GROUP B; SB_ENO, mod (rownum, 8)
GROUP Bé SB_ENO, mod (rownum, 4)
GROUP Bé SB _ENO, mod (rownum, 2)

)
GROUP BY SB_ENO;

MultiPoint Creation Issues

< Initially used SDO_AGGR _UNION to test construction feasibility;
® Used Appendix D (nested SQL);
® Parallel processing improved performance (still slow).
® SDO AGGR_UNION still had to be wrappered by PL/SQL
procedure to handle SDO_ORDINATE_ARRAY limits.
= A faster algorithmn/method for constructing multi-point objects
through a pure PL/SQL implementation was devised.
® |[nitial implementation provided sufficient performance to warrant
further investigation.
® The PL/SQL package DBMS PROFILER was used to identify
bottlenecks in the implementation and various changes were made
and compared. The following chart shows the final set of
Implementations.

Essentials

< Adopted approach has these SQL statements

SELECT ords.x=
BULK COLLECT INTO u_3D_ordinates 3 .
FROM mv_singlebeam_bathymetry a, Wh p t t
TABLE(mdsys.sdo_ordinate_array(a.geom.sdo_point.x, e re O I n CO u n
a.geom.sdo_point.y, . . .
a.geom.sdo_point.z)) ords < Ordlnate Ilmlt
WHERE a.sb_enc = rec.sb_eno
ORDER BY a.pointno;

< Where point count > ordinate limit

SELECT ords.x=
BULK COLLECT INTO v_3D_ecrdinates
FROH (SELECT rownum as pointorder,geom
FROM mv_singlebeam_bathymetry a
WHERE a.sb_enc = rec.sb_eno
ORDER BY a.pointno) b,
TABLE(mdsys.sdo_ordinate_array(b.geom.sdo_point.x,

b.geom.sdo_point.y,
b.geom.sdo_point.E)) ords
WHERE b.pointorder BETWEEN v_min_peoint AND v_max_point;
v_mpoint_rec.pointcount := (v_max_point - v_min_point + 1 J);
v_mpoint_rec.geom_mpoint := MDSYS.SDO_GEOMETRY(3005,8311,NULL,
MDSYS.SDO_ELEM_INFO_ARRAY(1,1,u_mpoint_rec.POINTCOUNT),
v_3D_ordinates);

Comparison Table

< Algorithm that used SDO_AGGR_UNION
1000 times slower than worst custom
PL/SQL

Comparison Chart (1)

Custom PL/SQL vs SDO_AGGR_UNION

35,000
32,500
30,000
27,500
25,000 [Original

22,500 I FunctionTuned

20,000 || NoFunction
17,500 E zgogofn:M
oPointMemory

15,000 |1 SdoPointAsOrds

12,500 I AIsQL

10,000 || AggrAppendixD
7,500
5,000
2,500

0

2]
e,
-
Q
O
@
0N
O
e
-
0
n
o
=
@
£

Column D

Algorithm

Comparison Chart 2

Comparison of Non-SDO_ AGGR_UNION Algorithms

[] Original

B FunctionTuned
|| NoFunction

|| SdoPoint

Il SdoPointMemory
|| SdoPointAsOrds
B AllSQL

(72
e
-
o)
O
o)
)]
o
g
-
)
n
al
£
)
E
—

Column D

Algorithm

Solution...

< Aggregation approach inside final PL/SQL function used
custom code and not SDO_AGGR _UNION.
® Procedure has 100 lines of code (all work done in 55
lines).
® (Generation of 13,000 individual surveys from 70million
individual 3D points took 50minutes!
~ DBMS PROFILER was a great tool!
< Oracle, please improve:
® Performance of SDO_ AGGR UNION
® Remove limit on SDO_ORDINATE ARRAY

