Tips and Tricks — PL/SQL, Locator
& Application Express (Apex)

2/ Simon Greener,
The SpatlalDB Advisor
&

Jamie Keene,

Senior Spatial Analyst
Open Spatial Pty Ltd

Genesis ...

e The background to this joint presentation was
work done when both of us worked at Forestry

Tasmania Pty Ltd.

- The work being presented includes two elements
* A set of PL/SQL packages that were written (81) to augment

Spatial/Locator functionality;
— Tip on using pipelined functions

* A series of applications built using WebDB, HtmIDB and

APEX.
— Demonstration of Apex, PL/SQL and MapViewer

Genesis — PL/SQL packages

e Oracle's excellent PL/SQL allowed us to create additional
functionality for deployment within an Oracle database.

— Used for spatial referential integrity checks;

— Automation of sdo geometry construction (eg trigger to
construct point from bearing/distance from known point
stored 1n northing/easting columns);

— Use of spatial functionality in Oracle's run queue;

- Augmenting the standard Locator/Spatial PL/SQL packages.

e These packages have been completely re-written since Simon
Greener left Forestry.

— He will present a few slides on these packages highlighting

one particular performance tip.

Genesis - WebDB

 We first started integrating Spatial and Oracle's
“out of the database” with WebDB.

 Built database reports on spatial database activities (eg
production of PDF based maps), data access etc
— Used for billing and budgetry reasons
e Also built point “editing” applications that allowed foresters
to create, move and delete simple point based data via 2
attribute columns (northing and easting)
— Spatial prototype that extended point editing to include graphic
drawing in an SVG plugin (with full synchronisation) was

demonstrated but not deployed (MapViewer did not exist at the
time).

Genesis - HtImIDB/APEX

 With release of 10gR1 all our WebDB
applications were ported to HtmlDB (now
Application Express - Apex)

— Experience gained with WebDB, coupled with greater
capability and flexibility of HtmlDB/Apex, has
allowed for an explosion in spatial integration cf
Google Maps via “mashups” etc.

e Jamie Keene will present some slides on
integrating Apex with MapViewer and Stmon's

PL/SQL packages.

PL/SQL COGO Package

* The packages that will be used today are the
COGO and GEOM packages.

 The GEOM package contains general functions
such as a “point in polygon” function (guarantees
the point falls mside 1ts polygon), and a
“vectorisation” function that 1s used 1n this
presentation.

 The COGO package was first constructed for use
inside a critical application “inventory” database at
Forestry.

Extracting bearings and distances

e Let's start with something simple
— Here 1s a polygon

Metes and Bounds..

 But we have a business requirement to annotate it
by bearings and distances dynamically generated
from the actual vectors that make up the boundary
of the polygon.

How?

* A little bit of PL/SQL 1n some types & packages...

CREATE OR REPLACE PACKAGE COGO

AS
FUNCTION PI RETURN NUMBER;
FUNCTION Bearing(dE1 in number,
dN1 in number,
dE2 in number,
dN2 in number)
RETURN NUMBER DETERMINISTIC;
FUNCTION Distance(dE1 in number,
dN1 in number,
dE2 in number,
dN2 in number)
RETURN NUMBER DETERMINISTIC;
END COGO;

CREATE OR REPLACE TYPE Coord2DType AS
OBJECT (

% NUMBER,

y NUMBER) ;

CREATE OR REPLACE TYPE Vector2DType AS
OBJECT (
startCoord Coord2DType,
endCoord Coord2DType)

CREATE OR REPLACE TYPE Vector2DSetType
AS TABLE OF Vector2DType;

CREATE OR REPLACE PACKAGE GEOM
AS

FUNCTION GetVector2D (

p_geometry in mdsys.sdo geometry)

RETURN CODESYS.VectorZ2DSetType
DETERMINISTIC;

END GEOM;

A view ...

CREATE OR REPLACE VIEW apex demo
AS
SELECT rownum AS gid,

(startx,starty,endx, endy)
*

(180/))
AS bearing,

ROUND ((startx,starty,endx,endy) , 2)
AS distance,

MDSYS.sdo geometry (2002, NULL,NULL,
MDSYS.SDO _ELEM INFO ARRAY(1,2,1),
MDSYS.SDO_ORDINATE ARRAY (startx,startY,endX,endY))

AS geometry
FROM (SELECT DISTINCT c.StartCoord.X AS startX,
c.StartCoord.Y AS starty,
c.EndCoord.X AS endX,
c.EndCoord.Y AS endY
FROM (SELECT geom

FROM ProjPoly2D

WHERE gid = 5) a,

TABLE (CAST ((a.geom)
AS codesys.Vector2DSetType)) c

Performance Tip - Pipelining

* Use of Pipelined functions substantially improves
performance, reduces memory use and 1s more

scalable.
— 2 Definitions of Vector2D

Function GetVector2D (
P geometry mdsys.sdo geometry)
Return Vector2DSetType Deterministic

Function GetVector2DAsPipelined (
P geometry mdsys.sdo geometry)
Return Vector2DSetType Pipelined

— Difference?

Difference: Ordinary

Non-Pipelined functions require memory...

FUNCTION GetVector2D (p_geometry IN mdsys.sdo geometry)
CODESYS.Vector2DSetType DETERMINISTIC;

BEGIN

IF v_vertex

1 THEN

v_vector := vectors.LAST;
vectors (v_vector) := Vector2DType{€oaord2DType (-1,1) ,Coord2DType(-1,1))
vectors (v_vector) .startCoord.x := v_coord zs;
vectors (v_vector) .startCoord.y := v_coord.y;

ELSE
vectors (v_vector) .endCoord.x := v_coord.x;
vectors (v_vector) .endCoord.y := v_coord.y;
v_vector := vectors.LAST;
vectors (v_vector) := Vector2DType (Coord2DType(-1,1) ,Coord2DType(-1,1))
vectors (v_vector) .startCoord.x := v_coord.x;
vectors (v_vector) .startCoord.y := v_coord.y;

END IF;

RETURN ’

END ;

Difference: Pipelined

e Pipelined use internal Oracle inter-process kernel
communications which are not dependent on user memory...

FUNCTION GetVector2D (p_geometry IN mdsys sdo_geometry)
RETURN CODESYS.Vector2DSetType

IF v_vertex = 1 THEN
v_vector.startCoord.x :
v_vector.startCoord.y :

ELSE
v_vector.endCoord.x :

v_vector.endCoord.y := v_coord.y;
v_vector.startCoord.x := v_coord.x;
v_vector.startCoord.y := v_coord.y;

v_vector.endCoord.x o
v_vector.endCoord.y o

L _

v_coord.x;
v_coord.y;

<

~_coord.x;

END ;

Performance metrics...

e Pipelining 1s FAST!
— But don't take my word for it.
— Let's vectorise some polygon data using the

GetVector2D() function and then compare 1t
to GetVector2DAsPipelined()

SELECT count (*)
FROM sp parcel;

COUNT (*)

Performance metrics...

CREATE TABLE {non }pipelined version
AS
SELECT rownum AS gid,
MDSYS.SDO_GEOMETRY (2002, NULL,NULL,
MDSYS.SDO _ELEM INFO ARRAY(1,2,1),
MDSYS.SDO ORDINATE ARRAY (startx,startY,endX, endY))
AS geometry
FROM (SELECT DISTINCT c.StartCoord.X AS startX,
c.StartCoord.Y AS starty,
c.EndCoord.X AS endX,
c.EndCoord.Y AS endY
FROM (SELECT geometry
FROM SP_PARCEL
) a,
TABLE (CAST (
{AsPipelined} (a.geometry)
AS)) ¢

Numbers...

SELECT COUNT (*)
FROM PIPELINED VERSION;

COUNT (*)

763916

Function TimelnSeconds
Vector2DSetType Elapsed: 00:02:18.13
Vector2DSetTypeAsPipelined Elapsed: 00:00:47.90

Pipelining improved performance by:

(1/(48/138)* 100 = 287%

Use of functions in Apex

test? &l

[Zu:u:umin]Q[Zoomout
| ocation X| 266780

* Origin Gid| 11685080 | [Generate Report Zoom Factor| 1024
a_Gid_to_use 116850802

Tag x| 266730 2|Tags ¥ |57 71026

Daar
oearll

11685080
11685080
11683080
11685080
11685080
11685030
11685080
11685080
11685080
11685080
11683080
11685080
11685080
11685030
11685080

1g and Distances &

107415
1482108
1034512

108565

108955
123942
1271880
12058
107437
107480
626169
108322
1065964
120541

GATE_WVALVE
GATE_WALVE
GATE_WALVE
GATE_WVALVE
GATE_WVALVE
GATE_WVALVE
GATE_WVALVE
GATE_WVALWVE
GATE_WVALVE
GATE_WALVE
GATE_WALVE
GATE_WVALVE
GATE_WVALVE
GATE_WVALVE
GATE_VALVE

20d 45m 44.638:
254 36m 48.473s
2594d 20m 14.395s
118d 37m 8.759=
303d 50m 56.304=
125d 2Tm 5.032s
130d 17m 2.657s
1445d 54m 45.868=
148d Tm 58.467=
18d 17m 50.303=
&4d 39m 56.063s
G0d 58m 53.467=
186d 44m 8.025=
266d 4m 25.3s

180d 34m 32

Zoomin]g[Zoomout

Summary

 PL/SQL 1s part of your Oracle Spatial “Swiss
Army Knife”
— Pipelining 1s fast, scalable and memory friendly.

* Apex i1s free, fully integrated, fast and powertul
- Apex + Spatial + MapViewer 1s a powerful
combination.

e Thanks: Mid Coast Water and Barwon Water for
use of their data.

