
Tips and Tricks – PL/SQL, Locator
& Application Express (Apex)

Simon Greener,
The SpatialDB Advisor

&
Jamie Keene,

Senior Spatial Analyst
Open Spatial Pty Ltd

Genesis ...

● The background to this joint presentation was
work done when both of us worked at Forestry
Tasmania Pty Ltd.
– The work being presented includes two elements

● A set of PL/SQL packages that were written (8i) to augment
Spatial/Locator functionality;

– Tip on using pipelined functions
● A series of applications built using WebDB, HtmlDB and

APEX.
– Demonstration of Apex, PL/SQL and MapViewer

Genesis – PL/SQL packages

● Oracle's excellent PL/SQL allowed us to create additional
functionality for deployment within an Oracle database.
– Used for spatial referential integrity checks;
– Automation of sdo_geometry construction (eg trigger to

construct point from bearing/distance from known point
stored in northing/easting columns);

– Use of spatial functionality in Oracle's run queue;
– Augmenting the standard Locator/Spatial PL/SQL packages.

● These packages have been completely re-written since Simon
Greener left Forestry.
– He will present a few slides on these packages highlighting

one particular performance tip.

Genesis - WebDB
● We first started integrating Spatial and Oracle's

“out of the database” with WebDB.
● Built database reports on spatial database activities (eg

production of PDF based maps), data access etc
– Used for billing and budgetry reasons

● Also built point “editing” applications that allowed foresters
to create, move and delete simple point based data via 2
attribute columns (northing and easting)

– Spatial prototype that extended point editing to include graphic
drawing in an SVG plugin (with full synchronisation) was
demonstrated but not deployed (MapViewer did not exist at the
time).

Genesis - HtmlDB/APEX

● With release of 10gR1 all our WebDB
applications were ported to HtmlDB (now
Application Express - Apex)
– Experience gained with WebDB, coupled with greater

capability and flexibility of HtmlDB/Apex, has
allowed for an explosion in spatial integration cf
Google Maps via “mashups” etc.

● Jamie Keene will present some slides on
integrating Apex with MapViewer and Simon's
PL/SQL packages.

PL/SQL COGO Package

● The packages that will be used today are the
COGO and GEOM packages.

● The GEOM package contains general functions
such as a “point in polygon” function (guarantees
the point falls inside its polygon), and a
“vectorisation” function that is used in this
presentation.

● The COGO package was first constructed for use
inside a critical application “inventory” database at
Forestry.

Extracting bearings and distances

● Let's start with something simple
– Here is a polygon

Metes and Bounds..

● But we have a business requirement to annotate it
by bearings and distances dynamically generated
from the actual vectors that make up the boundary
of the polygon.

How?
● A little bit of PL/SQL in some types & packages...

CREATE OR REPLACE PACKAGE COGO
AS

 FUNCTION PI RETURN NUMBER;

 FUNCTION Bearing(dE1 in number,
 dN1 in number,
 dE2 in number,
 dN2 in number)
 RETURN NUMBER DETERMINISTIC;

 FUNCTION Distance(dE1 in number,
 dN1 in number,
 dE2 in number,
 dN2 in number)
 RETURN NUMBER DETERMINISTIC;

...

END COGO;

CREATE OR REPLACE PACKAGE GEOM
AS

 FUNCTION GetVector2D (
 p_geometry in mdsys.sdo_geometry)
 RETURN CODESYS.Vector2DSetType
 DETERMINISTIC;

END GEOM;

CREATE OR REPLACE TYPE Coord2DType AS
OBJECT (
 x NUMBER,
 y NUMBER);

CREATE OR REPLACE TYPE Vector2DType AS
OBJECT (
 startCoord Coord2DType,
 endCoord Coord2DType);

CREATE OR REPLACE TYPE Vector2DSetType
 AS TABLE OF Vector2DType;

A view ...
CREATE OR REPLACE VIEW apex_demo
AS
SELECT rownum AS gid,
 codesys.Cogo.DD2DMS(
 codesys.Cogo.Bearing(startx,starty,endx,endy)
 *
 (180/codesys.Cogo.PI))
 AS bearing,
 ROUND(codesys.Cogo.Distance(startx,starty,endx,endy),2)
 AS distance,
 MDSYS.sdo_geometry(2002,NULL,NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1),
 MDSYS.SDO_ORDINATE_ARRAY(startx,startY,endX,endY))
 AS geometry
 FROM (SELECT DISTINCT c.StartCoord.X AS startX,
 c.StartCoord.Y AS startY,
 c.EndCoord.X AS endX,
 c.EndCoord.Y AS endY
 FROM (SELECT geom
 FROM ProjPoly2D
 WHERE gid = 5) a,
 TABLE(CAST(codesys.Geom.GetVector2D(a.geom)
 AS codesys.Vector2DSetType)) c
);

Performance Tip - Pipelining

● Use of Pipelined functions substantially improves
performance, reduces memory use and is more
scalable.
– 2 Definitions of Vector2D

 Function GetVector2D (
 p_geometry in mdsys.sdo_geometry)
 Return Vector2DSetType Deterministic
...
 Function GetVector2DAsPipelined (
 p_geometry in mdsys.sdo_geometry)
 Return Vector2DSetType Pipelined

– Difference?

Difference: Ordinary
● Non-Pipelined functions require memory...

FUNCTION GetVector2D (p_geometry IN mdsys.sdo_geometry)
 RETURN CODESYS.Vector2DSetType DETERMINISTIC;
 vectors Vector2DSetType := Vector2DSetType();
BEGIN
...
 IF v_vertex = 1 THEN
 vectors.EXTEND;
 v_vector := vectors.LAST;
 vectors(v_vector) := Vector2DType(Coord2DType(-1,1),Coord2DType(-1,1));
 vectors(v_vector).startCoord.x := v_coord.x;
 vectors(v_vector).startCoord.y := v_coord.y;
 ELSE
 vectors(v_vector).endCoord.x := v_coord.x;
 vectors(v_vector).endCoord.y := v_coord.y;
 vectors.EXTEND;
 v_vector := vectors.LAST;
 vectors(v_vector) := Vector2DType(Coord2DType(-1,1),Coord2DType(-1,1));
 vectors(v_vector).startCoord.x := v_coord.x;
 vectors(v_vector).startCoord.y := v_coord.y;
 END IF;
 ...
 RETURN vectors;
END;

Allocate memory
and add object to

the set

Define array of
vectors

Must return the filled set

Difference: Pipelined
● Pipelined use internal Oracle inter-process kernel

communications which are not dependent on user memory...
FUNCTION GetVector2D (p_geometry IN mdsys.sdo_geometry)
 RETURN CODESYS.Vector2DSetType PIPELINED;
 ...
BEGIN
...
 IF v_vertex = 1 THEN
 v_vector.startCoord.x := v_coord.x;
 v_vector.startCoord.y := v_coord.y;
 ELSE
 v_vector.endCoord.x := v_coord.x;
 v_vector.endCoord.y := v_coord.y;
 PIPE ROW (v_vector);
 v_vector.startCoord.x := v_coord.x;
 v_vector.startCoord.y := v_coord.y;
 v_vector.endCoord.x := -1;
 v_vector.endCoord.y := -1;
 END IF;
 ...
 RETURN;
END;

Pushes object into FIFO

Note keyword

Note: no return value

Performance metrics...
● Pipelining is FAST!

– But don't take my word for it.
– Let's vectorise some polygon data using the

GetVector2D() function and then compare it
to GetVector2DAsPipelined()
SELECT count(*)
 FROM sp_parcel;
 COUNT(*)

 57453

Performance metrics...
CREATE TABLE {non_}pipelined_version
AS
SELECT rownum AS gid,
 MDSYS.SDO_GEOMETRY(2002,NULL,NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,2,1),
 MDSYS.SDO_ORDINATE_ARRAY(startx,startY,endX,endY))
 AS geometry
 FROM (SELECT DISTINCT c.StartCoord.X AS startX,
 c.StartCoord.Y AS startY,
 c.EndCoord.X AS endX,
 c.EndCoord.Y AS endY
 FROM (SELECT geometry
 FROM SP_PARCEL
) a,
 TABLE(CAST(
 codesys.Geom.GetVector2D{AsPipelined}(a.geometry)
 AS codesys.Vector2DSetType)) c
);

Numbers...

Function TimeInSeconds
Vector2DSetType Elapsed: 00:02:18.13
Vector2DSetTypeAsPipelined Elapsed: 00:00:47.90

Pipelining improved performance by:

 (1 / (48 / 138) * 100 = 287%

SELECT COUNT(*)
 FROM PIPELINED_VERSION;
 COUNT(*)

 763916

Use of functions in Apex

Summary

● PL/SQL is part of your Oracle Spatial “Swiss
Army Knife”
– Pipelining is fast, scalable and memory friendly.

● Apex is free, fully integrated, fast and powerful
– Apex + Spatial + MapViewer is a powerful

combination.

● Thanks: Mid Coast Water and Barwon Water for
use of their data.

